Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Environ Sci Pollut Res Int ; 31(17): 25486-25499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472570

RESUMEN

Human biomonitoring of toxic trace elements is of critical importance for public health protection. The current study aims to assess the levels of selected trace metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) into paired human nail and hair samples (n = 180 each) from different altitudinal setting along the Indus River, and which were measured by using inductively coupled plasma mass spectrometry (ICP-MS). The human samples (hair and nail) were collected from four different ecological zones of Pakistan which include frozen mountain zone (FMZ), wet mountain zone (WMZ), riverine delta zone (RDZ), and low-lying southern areas (LLZ). Our results showed the following occurrence trends into studied hair samples: higher values (ppm) of Zn (281), Co (0.136), and Mn (5.65) at FMZ; Cr (1.37), Mn (7.83), and Ni (1.22) at WMZ; Co (0.15), Mn (11.89), and Ni (0.99) at RDZ; and Mn (8.99) and Ni (0.90) at LLZ. While in the case of nails, the levels (ppm) of Mn (9.91) at FMZ and Mn (9.38, 24.1, and 12.5), Cr (1.84, 3.87, and 2.33), and Ni (10.69, 8.89, and 12.6) at WMZ, RDZ and LLZ, respectively, showed higher concentration. In general, among the studied trace elements, Mn and Ni in hair/nail samples were consistently higher and exceeded the WHO threshold/published reference values in most of the studied samples (> 50-60%) throughout the Indus basin. Similarly, hair/nail Pb values were also higher in few cases (2-10%) at all studied zones and exceeded the WHO threshold/published reference values. Our area-wise comparisons of studied metals exhibited altitudinal trends for Cd, Cr, Zn, and Mn (p < 0.05), and surprisingly, the values were increasing from south to north (at higher altitudes) and indicative of geogenic sources of the studied toxic elements, except Mn, which was higher at lower floodplain areas. Estimated daily intake (EDI) values showed that food and drinking water had the highest contribution towards Zn, Cu, Mn, and Ni and accumulation at all studied zones. Whereas, dust also acts as the main exposure route for Mn, Co, Cr, and Cd followed by the food, and water.


Asunto(s)
Agua Potable , Metales Pesados , Oligoelementos , Humanos , Monitoreo del Ambiente/métodos , Monitoreo Biológico , Cadmio/análisis , Pakistán , Plomo/análisis , Oligoelementos/análisis , Agua Potable/análisis , Metales Pesados/análisis
2.
Environ Pollut ; 348: 123820, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527583

RESUMEN

Microplastics (MPs) and nanoplastics (NPs) have been suspected as contaminants in various foodstuffs, including salts, all over the world. Regarding the different sizes and polymer types, the mass concentrations of actual plastic particles in salt are not very clear. The purpose of this study is to develop a scalable method for qualitative and quantitative analysis of MPs and NPs by using Pyrolysis Gas Chromatography Quadrupole-Time of Flight mass spectrometry (Py-GC/QTOFMS) to detect their mass concentrations in salt samples. The targeted and suspected lists of polymers in salts were compiled based on the combined results of the high-resolution mass spectrometry (HRMS) full scanning with auxiliary MS dataset and the laser direct infrared (LDIR) chemical imaging analysis. The seven targeted MPs with polymer standards, i.e., polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polycarbonate (PC), were first subjected to a full MS scanning mode of the Py-GC/QTOFMS analysis. Subsequently, the parental masses of their pyrolysis compounds were used as the seeds to generate the related daughter masses. This process established both retention time and mass-pairs matching for the target MS/MS mode for enabling the identification and quantification of the particles. The suspected MPs with a matching degree >0.65 in the LDIR list were explored either by the full scan MS. Only PVC was identified, and PET was suspected. The Py-GC/QTOFMS result is complementary and comparable to the LDIR detection with the matching degree >0.85. We identified that PVC and PET (suspected) can be measured in both commercial and bulk sea salts, and their concentrations in sea salts are much higher than in rock salts, implying heavy contamination of the seawater.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Microplásticos , Sales (Química) , Pirólisis , Espectrometría de Masas en Tándem , Cromatografía de Gases y Espectrometría de Masas/métodos , Polímeros/química , Contaminantes Químicos del Agua/análisis
3.
Environ Toxicol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511876

RESUMEN

Environmental arsenic exposure is one of the major global public health problems. Studies have shown that arsenic exposure can cause renal fibrosis, but the underlying mechanism is still unclear. Integrating the in vivo and in vitro models, this study investigated the potential molecular pathways for arsenic-induced renal fibrosis. In this study, SD rats were treated with 0, 5, 25, 50, and 100 mg/L NaAsO2 for 8 weeks via drinking water, and HK2 cells were treated with different doses of NaAsO2 for 48 h. The in vivo results showed that arsenic content in the rats' kidneys increased as the dose increased. Body weight decreased and kidney coefficient increased at 100 mg/L. As a response to the elevated NaAsO2 dose, inflammatory cell infiltration, renal tubular injury, glomerular atrophy, tubulointerstitial hemorrhage, and fibrosis became more obvious indicated by HE and Masson staining. The kidney transcriptome profiles further supported the protein-protein interactions involved in NaAsO2-induced renal fibrosis. The in vivo results, in together with the in vitro experiments, have revealed that exposure to NaAsO2 disturbed mitochondrial dynamics, promoted mitophagy, activated inflammation and the TGF-ß1/SMAD signaling pathway, and finally resulted in fibrosis. In summary, arsenic exposure contributed to renal fibrosis via regulating the mitochondrial dynamics and the NLRP3-TGF-ß1/SMAD signaling axis. This study presented an adverse outcome pathway for the development of renal fibrosis due to arsenic exposure through drinking water.

4.
J Hazard Mater ; 466: 133501, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246060

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) can pass through the placental barrier and pose health risks to fetuses. However, exposure and transplacental transfer patterns of emerging PFAS remain unclear. Here, 24 PFAS were measured in paired maternal whole blood (n = 228), umbilical cord whole blood (n = 119) and serum (n = 120). Orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to differentiate PFAS between different matrices. The transplacental transfer (TPT) of PFAS was calculated using cord to maternal whole blood concentration ratios. PFOS and PFOA were still the dominant PFAS in maternal samples. The emerging PFAS had higher TPT than PFOS and PFOA. Moreover, PFAS with the same chain length but different functional groups and C-F bonds showed different TPT, such as PFOS and PFOSA (C8, median: 0.090 vs. 0.305, p < 0.05) and PFHxS and 4:2 FTS (C6, median: 0.220 vs. 1.190, p < 0.05). A significant sex difference in 4:2 FTS (median: boys 1.250, girls 1.010, p < 0.05) were found. Furthermore, we observed a significant U-shaped trend for the TPT of carboxylates with increasing carbon chain length. PFAS showed a compound-specific transfer through placental barrier and a compound-specific distribution between different matrices in this study.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Humanos , Masculino , Embarazo , Femenino , Estudios de Cohortes , Placenta , Sangre Fetal/química , Fluorocarburos/análisis , China , Ácidos Alcanesulfónicos/análisis , Contaminantes Ambientales/análisis
5.
Metabolites ; 14(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38248846

RESUMEN

Gestational diabetes mellitus (GDM) is a complex metabolic condition during pregnancy with an intricate link to gut microbiota alterations. Throughout gestation, notable shifts in the gut microbial component occur. GDM is marked by significant dysbiosis, with a decline in beneficial taxa like Bifidobacterium and Lactobacillus and a surge in opportunistic taxa such as Enterococcus. These changes, detectable in the first trimester, hint as the potential early markers for GDM risk. Alongside these taxa shifts, microbial metabolic outputs, especially short-chain fatty acids and bile acids, are perturbed in GDM. These metabolites play pivotal roles in host glucose regulation, insulin responsiveness, and inflammation modulation, which are the key pathways disrupted in GDM. Moreover, maternal GDM status influences neonatal gut microbiota, indicating potential intergenerational health implications. With the advance of multi-omics approaches, a deeper understanding of the nuanced microbiota-host interactions via metabolites in GDM is emerging. The reviewed knowledge offers avenues for targeted microbiota-based interventions, holding promise for innovative strategies in GDM diagnosis, management, and prevention.

6.
J Hazard Mater ; 465: 133142, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061129

RESUMEN

Nonalcoholic steatohepatitis (NASH) is multifactorial that lifestyle, genetic, and environmental factors contribute to its onset and progression, thereby posing a challenge for therapeutic intervention. Nanoplastic (NP) is emerged as a novel environmental metabolism disruptor but the etiopathogenesis remains largely unknown. In this study, C57BL/6 J mice were fed with normal chow diet (NCD) and high-fat diet (HFD) containing 70 nm polystyrene microspheres (NP). We found that dietary-derived NP adsorbed proteins and agglomerated during the in vivo transportation, enabling diet-induced hepatic steatosis to NASH. Mechanistically, NP promoted liver steatosis by upregulating Fatp2. Furthermore, NP stabilized the Ip3r1, and facilitated ER-mitochondria contacts (MAMs) assembly in the hepatocytes, resulting in mitochondrial Ca2+ overload and redox imbalance. The redox-sensitive Nrf2 was decreased in the liver of NP-exposed mice, which positively regulated miR26a via direct binding to its promoter region [-970 bp to -847 bp and -318 bp to -176 bp]. NP decreased miR26a simultaneously upregulated 10 genes involved in MAMs formation, lipid uptake, inflammation, and fibrosis. Moreover, miR26a inhibition elevated MAMs-tether Vdac1, which promoted the nucleus translocation of NF-κB P65 and Keap1 and functionally inactivated Nrf2, leading to a vicious cycle. Hepatocyte-specific overexpressing miR26a effectively restored ER-mitochondria miscommunication and ameliorated NASH phenotype in NP-exposed and Keap1-overexpressed mice on HFD. The hepatic MAM-tethers/Nrf2/miR26a feedback loop is an essential metabolic switch from simple steatosis to NASH and a promising therapeutic target for oxidative stress-associated liver damage and NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Microplásticos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa , Oxidación-Reducción , Mitocondrias/metabolismo
7.
Environ Res ; 245: 117973, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145729

RESUMEN

Air pollution, particularly fine particulate matter (PM2.5), poses a major threat to human health. Exercise has long been recognized as a beneficial way to maintain physical health. However, there is limited research on whether exercise can mitigate the damage caused by PM2.5 exposure. In this study, the mice were exercised on the IITC treadmill for 1 h per day, then exposed to concentrated PM2.5 for 8 h. After 2, 4 and 6-month exercise and PM2.5 exposure, the glucose tolerance and insulin tolerance were determined. Meanwhile, the corresponding indicators in epididymal white adipose tissue (eWAT), brown adipose tissue (BAT) and skeletal muscle were detected. The results indicated that PM2.5 exposure significantly increased insulin resistance (IR), while exercise effectively attenuated this response. The observations of muscle, BAT and eWAT by transmission electron microscopy (TEM) showed that PM2.5 significantly reduced the number of mitochondria in all of the three tissues mentioned above, and decreased the mitochondrial area in skeletal muscle and BAT. Exercise reversed the changes in mitochondrial area in all of the three tissues, but had no effect on the reduction of mitochondrial number in skeletal muscle. At 2 months, the expressions of Mfn2, Mfn1, OPA1, Drp1 and Fis1 in eWAT of the PM mice showed no significant changes when compared with the corresponding FA mice. However, at 4 months and 6 months, the expression levels of these genes in PM mice were higher than those in the FA mice in skeletal muscle. Exercise intervention significantly reduced the upregulation of these genes induced by PM exposure. The study indicated that PM2.5 may impact mitochondrial biogenesis and dynamics by inhibiting the SIRT1/AMPKα/PGC1-α/NRF1 pathway, which further lead to IR, glucose and lipid disorders. However, exercise might alleviate the damages caused by PM2.5 exposure.


Asunto(s)
Resistencia a la Insulina , Material Particulado , Humanos , Animales , Ratones , Material Particulado/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Transducción de Señal , Tejido Adiposo Blanco/metabolismo , Glucosa/metabolismo
8.
Sci Total Environ ; 904: 166838, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689206

RESUMEN

Arsenic containment is one of the most severe environmental problems. It has been reported that arsenic exposure could cause male reproductive damage. However, the evidence chain from sodium arsenite (NaAsO2) exposure to adverse male fertility outcomes has not been completed by molecular events. In this study, adult male rats were exposed to NaAsO2 for eight weeks via drinking water for verifying their reproductive capacity by checking the phenotypes of testis damage, sperm quality, and female pregnancy rate. H&E staining indicated testicular cells had atrophied, and necrosis was observed under transmission electron microscopy. Sperm viability tended to decrease, and sperm malformation increased. Notably, metabolites in the testes and sperm showed substantial disruption, especially sperm metabolites. The pregnancy rate tests showed that arsenic decreased male rats' reproduction, with some adverse outcomes of the increased numbers of unpregnant females. However, the fetal crown-rump length remained unaltered, indicating that the pregnancy rate was impacted by arsenic exposure but not fetal growth. On arsenic toxicometabolomics analysis, docosahexaenoic acid (DHA) in sperm was the clearest metabolic sign to correlate with the unpregnant rate. In summary, arsenic exposure can cause male infertility via the injured sperm, which results in decreased female pregnancy. The DHA information may imply the dietary intervention for improving sperm quality. Although the fetal growth of the successful pregnancy has not been affected, the changes in epigenetic phenotypes carried by sperms still need to be verified.


Asunto(s)
Arsénico , Infertilidad Masculina , Embarazo , Humanos , Ratas , Masculino , Femenino , Animales , Testículo/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Recuento de Espermatozoides , Semen , Ratas Sprague-Dawley , Espermatozoides , Infertilidad Masculina/inducido químicamente
9.
J Appl Toxicol ; 43(11): 1613-1629, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37278136

RESUMEN

Chronic exposure to very low ambient PM2.5 has been linked to cardiovascular risks in epidemiological observation, which also brought doubts on its safety threshold. In this study, we approached this question by chronic exposure of AC16 to the non-observable acute effect level (NOAEL) PM2.5 5 µg/mL and its positive reference 50 µg/mL, respectively. The doses were respectively defined on the cell viabilities >95% (p = 0.354) and >90% (p = 0.004) when treated acutely (24 h). To mimic the long-term exposure, AC16 was cultured from the 1st to 30th generations and treated with PM2.5 24 h in every three generations. The integration of proteomic and metabolomic analysis was applied, and 212 proteins and 172 metabolites were significantly altered during the experiments. The NOAEL PM2.5 induced both dose- and time-dependent disruption, which showed the dynamic cellular proteomic response and oxidation accumulation, the main metabolomics changes were ribonucleotide, amino acid, and lipid metabolism that have involved in stressed gene expression, and starving for energy metabolism and lipid oxidation. In summary, these pathways interacted with the monotonically increasing oxidative stress and led to the accumulated damage in AC16 and implied that the safe threshold of PM2.5 may be non-existent when a long-term exposure occurred.

10.
Chemosphere ; 333: 138939, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37182713

RESUMEN

Aqueous environments are generally thought to be a source of pooling and re-distribution for both micro-plastics (MPs) and nano-plastics (NPs); however, significantly less data on NPs than MPs have been reported. The occurrence of salts, proteins, and other organic matter may promote or inhibit the aggregation of NPs to form agglomeration particles, making their detection more difficult. In this study, 80 and 500 nm polystyrene nano-plastics (PS-NPs) modified by four different functional groups (PS-Bare, PS-COOH, PS-NH2, and PS-CHO-500 nm) were selected to mimic the flocculation and/or sedimentation of NPs in salts (NaCl, CaCl2, and Na2SO4) and protein solutions. The results showed that the 80 nm PS-NPs are only colloidal in pure water. All four strong electrolyte solutions that were tested significantly promoted the aggregation of PS-NPs, including those that were protein-coated. In addition, 500 nm PS-CHO did not flocculate but gradually settled into sedimentation. Therefore, Raman spectrometry can be used to analyze assembled PS-NPs, but is not suitable for analyzing normal PS-NPs. By combining fractal morphology, this study provides insight into the comprehensive analysis of PS-NPs in water solutions, including the digestion of biological samples.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Poliestirenos/química , Sales (Química) , Iones , Cloruro de Sodio , Contaminantes Químicos del Agua/análisis
11.
Front Cell Infect Microbiol ; 13: 1065884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37009505

RESUMEN

Background: Caesarean section (CS) is associated with newborns' health risks due to the blocking of microbiome transfer. The gut microbiota of CS-born babies was different from those born vaginally, which may be attributed to reduced exposure to maternal vaginal microbes during labour. To understand the microbial transfer and reduce CS disadvantages, the effect of vaginal microbiota exposure on infant gut microbiota composition was evaluated using 16s rDNA sequencing-based techniques. Results: Pregnant women were recruited in the Women and Children's Hospital, School of Medicine, Xiamen University from June 1st to August 15th, 2017. Maternal faeces (n = 26), maternal vaginal fluids (n = 26), and neonatal transitional stools (n = 26) were collected, while the participants underwent natural delivery (ND) (n = 6), CS (n = 4) and CS with the intervention of vaginal seedings (I) (n = 16). 26 mothers with the median age 26.50 (25.00-27.25) years showed no substantial clinical differences. The newborns' gut microbiota altered among ND, CS and I, and clustered into two groups (PERMANOVA P = 0.001). Microbial composition of ND babies shared more features with maternal vaginal samples (PERMANOVA P = 0.065), while the microbiota structure of ND babies was obviously different from that of sample of maternal faeces. The genus Bacteroides in CS-born babies with intervention approached to vaginal-born neonates, compared with CS-born neonates without intervention. Conclusions: Neonatal gut microbiota was dependent on the delivery mode. And the gut microbiota CS newborns with vaginal seeding shared more features with those of ND babies, which hinted the aberrant gut microbiota composition initiated by CS might be partly mitigated by maternal vaginal microbiota exposure.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Lactante , Niño , Recién Nacido , Humanos , Femenino , Embarazo , Adulto , Cesárea , Heces
12.
Ecotoxicol Environ Saf ; 255: 114769, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924560

RESUMEN

Bisphenol F (BPF), BPS and BPAF are gaining popularity as main substitutes to BPA, but there is no clear evidence that these compounds disrupt glycemic homeostasis in the same way. In this study, four bisphenols were administered to C57BL/6 J mice, and showed that the serum insulin was elevated in the BPA and BPS exposed mice, whereas BPF exposed mice exhibited lower serum insulin and higher blood glucose. BPF decreased oxidized glutathione/reduced glutathione ratio (GSSG/GSH) and N6-methyladenosine (m6A) levels, which was responsible for pancreatic apoptosis in mice. Additionally, the downregulation of Nrf2 and the aberrant regulation of the p53-lncRNA H19 signaling pathway further increased miR-200 family in the BPF-exposed pancreas. The miR-200 family directly suppressed Mettl14 and Xiap by targeting their 3' UTR, leading to islet apoptosis. Antioxidant treatment not only elevated m6A levels and insulin contents but also suppressed the miR-200 family in the pancreas, ultimately improving BPF-induced hyperglycemia. Taken together, miR-200 family could serve as a potential oxidative stress-responsive regulator in the pancreas. And moreover, we demonstrated a novel toxicological mechanism in that BPF disrupted the Keap1-Nrf2 redox system to upregulate miR-141/200b/c which controlled pancreatic insulin production and apoptosis via Mettl14 and Xiap, respectively. As the major surrogates of BPA in various applications, BPF was also diabetogenic, which warrants attention in future research.


Asunto(s)
Hiperglucemia , MicroARNs , Animales , Ratones , Ratones Endogámicos C57BL , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/genética , Sulfonas , Compuestos de Bencidrilo/toxicidad , Estrés Oxidativo , Insulina , Oxidación-Reducción , Hiperglucemia/inducido químicamente , Hiperglucemia/genética , Páncreas , MicroARNs/genética
13.
Chemosphere ; 312(Pt 1): 137228, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36372340

RESUMEN

Millions of people are at risk of consuming arsenic (As) contaminated drinking water in Pakistan. The current study aimed to investigate urinary arsenic species [iAsIII, iAsV, dimethylarsinic acid (DMA), methylarsonic acid (MMA)] and their potential toxicity biomarkers (based on urinary metabolome) in order to characterize the health effects in general adult male participants (n = 588) exposed to various levels of arsenic in different floodplain areas of Pakistan. The total urinary arsenic concentration (mean; 161 µg/L) of studied participants was lower and/or comparable than those values reported from other highly contaminated regions, but exceeded the Agency for Toxic Substances and Disease Registry (ATSDR) limits. For all the participants, the most excreted species was DMA accounting for 65% of the total arsenic, followed by MMA (20%) and iAs (16%). The percentage of MMA detected in this study was higher than those of previously reported data from other countries. These results suggested that studied population might have high risk of developing arsenic exposure related adverse health outcomes. Furthermore, random forest machine learning algorithm, partial correlation and binary logistic regression analysis were performed to screen the arsenic species-related urinary metabolites. A total of thirty-eight metabolites were extracted from 2776 metabolic features and identified as the potential arsenic toxicity biomarkers. The metabolites were mainly classified into xanthines, purines, and amino acids, which provided the clues linking the arsenic exposure with oxidative stress, one-carbon metabolism, purine metabolism, caffeine metabolism and hormone metabolism. These results would be helpful to develop early health warning system in context of arsenic exposure among the general populations of Pakistan.


Asunto(s)
Arsénico , Arsenicales , Adulto , Masculino , Humanos , Arsénico/análisis , Pakistán , Arsenicales/análisis , Ácido Cacodílico , Biomarcadores/metabolismo , Metaboloma , Exposición a Riesgos Ambientales/análisis
14.
Environ Pollut ; 315: 120381, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228862

RESUMEN

Organic pollutants (OPs) including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) have showed neuro-damaging effects, but studies concerning the autism spectrum disorder (ASD) risk are limited. A case-control study with ASD (n = 125) and healthy control (n = 125) children was conducted on the different land use settings across Punjab, Pakistan. Serum concentrations of 26 OCPs, 29 PCB congeners, 11 PBDEs and 32 PAHs were measured. Serum PCB77 (AOR = 2.00; 95% CI: 1.43, 2.18), PCB118 (AOR = 1.49; 95% CI: 1.00, 2.00), PCB128 (AOR = 1.65; 95% CI: 1.01, 1.91), PCB153 (AOR = 1.80; 95% CI: 1.55, 1.93) were significantly higher, but PCB187 (AOR = 0.37; 95% CI: 0.24, 0.49) was significantly lower in the ASD cases when compared to the controls. Serum BDE99 (AOR = 0.48; 95% CI: 0.26, 0.89) was significantly higher in the healthy controls than in the ASD cases. Among the analyzed OCPs, p,p'-DDE (AOR = 1.50; 95% CI: 1.00, 1.85) was significantly elevated in the ASD cases with comparison in the controls. For PAHs, serum dibenzothiophene (AOR = 7.30; 95% CI: 1.49, 35.85) was significantly higher in the ASD, while perylene (AOR = 0.25; 95% CI: 0.06, 1.10) and fluorene (AOR = 0.21; 95% CI: 0.06, 0.72) were significantly higher in the controls. In addition, many of the serum pollutants were significantly associated with GSTT1, GSTM1 (null/present polymorphism) and presented the genotypic variation to respond xenobiotics in children. The children living in proximity to urban and industrial areas had a greater exposure to most of the studied pollutants when compared to the rural children, however children residing in rural areas showed higher exposure to OCPs. This comprehensive study documents an association between environmental exposure risk of several organic pollutants (OPs) from some contaminated environmental settings with ASD risk in children from Pakistan.


Asunto(s)
Trastorno del Espectro Autista , Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Niño , Humanos , Éteres Difenilos Halogenados/análisis , Trastorno del Espectro Autista/epidemiología , Estudios de Casos y Controles , Hidrocarburos Clorados/análisis , Bifenilos Policlorados/análisis , Plaguicidas/análisis , Monitoreo del Ambiente
15.
J Hazard Mater ; 436: 129213, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739735

RESUMEN

Humans are simultaneously and constantly exposed to various lipophilic chain phthalate acid esters. The association of urinary phthalate metabolites with altered male steroid hormone synthesis and metabolism was examined using epidemiology and toxicology studies. We measured 8 phthalate metabolites [monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-n-octylphthalate (MOP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP)] and two sex hormones [testosterone (T) and estradiol (E2)] in single serum and repeated spot urine samples among 451 reproductive-age males. Moreover, in vitro experiments with Leydig cell MLTC-1 steroidogenesis and liver cell HepG2 efflux in response to mixed and individual phthalates were designed to simulate real-world scenarios of human exposure. As a joint mixture, the phthalate metabolite was inversely associated with serum T and E2 concentrations but positively associated with urinary T and E2 concentrations. Combined with in vitro experiments, DEHP metabolites were identified as the predominant contributor to the decline in hormone synthesis, and ATP-binding cassette (ABC) gene activation might be involved in hormone excretion. Exposure to environmentally relevant phthalates was associated with both altered steroid synthesis and excretion, which provides additional insights into the endocrine-disrupting potential of phthalates.


Asunto(s)
Contaminantes Ambientales , Ácidos Ftálicos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/metabolismo , Hormonas , Humanos , Masculino , Ácidos Ftálicos/metabolismo , Reproducción , Esteroides
16.
Toxicol In Vitro ; 82: 105376, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35550414

RESUMEN

Few studies have reported the accumulation of non-observable acute effect (NOAE) of PM2.5, especially exposure to the NOAE doses (NOAEDs) of PM2.5 in chronic way. To address this issue, HUVECs were cultured from the 1st to 30th generations (G1 to G30) and treated by the NOAED PM2.5 once every three passages. The generational changes of oxidative damage markers, inflammatory factors, and cell adhesion molecules (CAMs) were monitored in HUVECs at G6, G12, G18, G24, and G30, and proteomes at G18 and G30, respectively. The oxidative damages monotonically accumulated with exposure time elongation and PM2.5 dose increases. Similar to the oxidative trends, VCAM1 and ICAM1 significantly and dose-dependently increased at G30. However, many inflammatory factors altered with complex patterns to respond the NOAEDs' PM2.5. Proteomic results demonstrated most proteins expressed stably, and the generational proteome alterations were more apparent than the NOAEDs' PM2.5 induced ones. The PM2.5-related proteins varied much, but only few can cross the doses and generations. These observations suggested that the proteins changed holistically rather than individually. In summary, SOD1, SUMO2, and H3F3A may initiate HUVECs responses to PM2.5, and then broadcast and accumulate the NOAE via DNA repair, immune response, and glycolysis.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/toxicidad , Oxidación-Reducción , Estrés Oxidativo , Material Particulado/toxicidad , Proteómica
17.
Environ Pollut ; 307: 119533, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35618146

RESUMEN

Indoor particulate matter (PM) and black carbon (BC) are associated with adverse cardiopulmonary effect. However, the cumulative and interactive effects of the mixture of size-fractioned PMs and BC on cardiopulmonary function are not well understood, and the underlying biological mechanisms remain unclear. This repeated-measure study was conducted to assess the joint cardiopulmonary effect and metabolic mechanisms of multiple-size particles and BC among 46 children. PM0.5, PM1, PM2.5, PM5, PM10 and BC were monitored for 5 weekdays. Cardiorespiratory function measurements and urine samples collection were conducted three times. Untargeted-metabolomics and meet-in-metabolite approach were applied to mechanism investigation. Bayesian machine kernel regression was adopted to analyze associations among PMs, cardiopulmonary function and metabolites. Lung function and heart rate variability significantly decreased with the increased PMs and BC co-exposure (p < 0.05). The effective particles were BC, PM1-2.5 and PM0.5 in turn. No interaction effects of different particles on cardiopulmonary function were observed at different lag days. BC-related glucose and fatty acid increase, and PM1-2.5-related branched-chain amino acid degradation were primarily observed. Other metabolisms were successively disturbed. The greatest joint effects of PMs and BC on metabolism were mainly at lag0 and lag01 day. They occurred earlier than the strongest effects on cardiopulmonary function, which were at lag01 and lag02 day. BC, PM1-2.5 and PM0.5 were mainly associated with cardiorespiratory indices by disturbing amino acids, glucose, lipid, isoflavone and purine metabolism. Mitochondrial productivity and antioxidation reduction are pivotal to the relevant metabolic alterations. More attention should be paid to BC and smaller-size PMs to control indoor PM pollution and its adverse effect on children.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire Interior/análisis , Teorema de Bayes , Carbono/análisis , Niño , Glucosa , Humanos , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/toxicidad , Hollín
18.
J Transl Med ; 20(1): 108, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246141

RESUMEN

BACKGROUND: Hypertension is highly prevalent and associated with the elevated risks of cardiovascular diseases, dementia, and physical disabilities among adults. Although the correlation between bilirubin and hypertension has been reported, the observation in quinquagenarian population is scarce. We aimed to examine bilirubin-hypertension association in Guankou Ageing Cohort Study. METHODS: Participants ≥ 55 years were recruited and their questionnaires and physical examination data were collected. Kaplan-Meier survival analysis and Cox proportional hazards regression were implemented to assess the hypertension risk. The non-liner dose-response relationships of bilirubin-hypertension were determined by restricted cubic spline (RCS) models. Receiver operating characteristic (ROC) curves and multiple factors analysis (MFA) were performed to evaluate the predictive abilities. RESULTS: 1881 eligible participants (male 43.75%, female 56.25%) with the median age of 61.00 (59.00-66.00) were included. The hazard ratio (HR, 95% CI) of serum total bilirubin (STB) and unconjugated bilirubin (UCB) were 1.03 (1.01-1.05) and 1.05 (1.03-1.07), while conjugated bilirubin (CB) showed a weak protective effect with the HR of 0.96 (0.92-0.99), and the associations remained significant in all models. RCS analyses further indicated the similar bidirectional effects of STB and UCB with the cut-off of 12.17 µmol/L and 8.59 µmol/L, while CB exhibited inverse bidirectional dose-response relationship with a cut-off of 3.47 µmol/L. ROC curves and MFA showed baseline STB combined with age, BMI, and waist circumference could well discriminate the low and high of hypertension risk. CONCLUSIONS: Our findings suggested the higher levels of total and unconjugated bilirubin were hazardous factors of hypertension, while an inverse effect presented when more bilirubin was conjugated.


Asunto(s)
Bilirrubina , Hipertensión , Adulto , Envejecimiento , China/epidemiología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo
19.
J Hazard Mater ; 422: 126892, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34425427

RESUMEN

Microplastics (MPs) contamination is ubiquitous in environmental matrices worldwide. Moreover these pollutants can be ingested by organisms and transported to organs via the circulatory system. Although efficient methods for the analysis of MPs derived from environment matrices and organisms' tissue samples have been developed after special sample pre-treatment, there remains a need for an optimised approach allowing direct identification and visualisation these MPs in real environmental matrices and organismal samples. Herein, we firstly used a multivariate curve resolution-alternating least squares (MCR-ALS) analysis of Raman hyperspectral imaging data to direct identification and visualisation of MPs in a complex serum background. Four common MPs types including polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyethylene terephthalate (PET) were identified and visualised either individually or in mixtures within spiked samples at an 8-µm spatial resolution. Moreover, Raman imaging based on MCR-ALS was successfully applied in fish faeces biological samples and environmental sand samples for in situ MPs identification directly without washing or removal of organic matter. The current results demonstrate Raman imaging based on MCR-ALS as a novel imaging approach for direct identification and visualisation of MPs, through extraction of MPs' chemical spectra within a complicated biological or environmental background whilst eliminating overlapping Raman bands and fluorescence interference.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Plásticos , Polietileno , Contaminantes Químicos del Agua/análisis
20.
Mol Aspects Med ; 87: 101006, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34304900

RESUMEN

To explore the etiology of diseases is one of the major goals in epidemiological study. Meet-in-metabolite analysis reconstitutes biomonitoring-based adverse outcome (AO) pathways from environmental exposure to a disease, in which the chemical exposome-related metabolism responses are transmitted to incur the AO-related metabolism phenotypes. However, the ongoing data-dependent acquisition of non-targeted biomonitoring by high-resolution mass spectrometry (HRMS) is biased against the low abundance molecules, which forms the major of molecular internal exposome, i.e., the totality of trace levels of environmental pollutants and/or their metabolites in human samples. The recent development of data-independent acquisition protocols for HRMS screening has opened new opportunities to enhance unbiased measurement of the extremely low abundance molecules, which can encompass a wide range of analytes and has been applied in metabolomics, DNA, and protein adductomics. In addition, computational MS for small molecules is urgently required for the top-down exposome databases. Although a holistic analysis of the exposome and endogenous metabolites is plausible, multiple and flexible strategies, instead of "putting one thing above all" are proposed.


Asunto(s)
Exposición a Riesgos Ambientales , Metabolómica , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Espectrometría de Masas , Metaboloma , Metabolómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...